

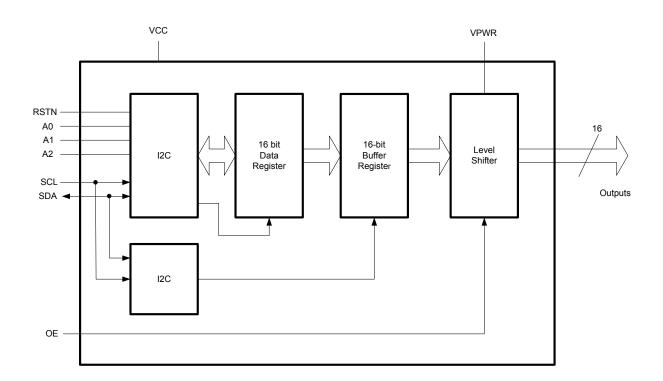
#### Features:

- 16 Push-Pull Outputs Rated at 60V, 15mA
- 6V to 60V Driver Supply Range
- 1.65V to 5.5V Logic Supply Range
- I2C Interface
- Synchronous update across multiple packages
- · Outputs can be paralleled
- 28 Lead QFN Package

# **Applications:**

- White Goods
- ATE
- Industrial Equipment

# **General Description**


The MX8771 is a 16 channel high voltage switch with I2C serial input control. The MX8771 connects directly to a microprocessor through a standard I2C interface. The push-pull output configuration can drive up to 60 volts at 15mA. Outputs can be paralleled for increased drive current up to a device total of 240mA sink or source.

The MX8771 is designed to operate over a temperature range of -40°C to +85°C, and is available in a QFN-28 Package.

# **Ordering Information**

| Part No.  | Description        | Qty  |
|-----------|--------------------|------|
| MX8771R   | QFN-28             | 73   |
| MX8771RTR | QFN-28 Tape & Reel | 2500 |

# **Functional Block Diagram**



MX8771 1 3/6/08
Drawing No. 877109 www.claremicronix.com



### **Absolute Maximum Ratings** (Voltages with respect to GND=0V)

| Parameter                                | Symbol        | Min   | Max    | Unit |  |  |
|------------------------------------------|---------------|-------|--------|------|--|--|
| VPWR Supply Voltage                      | VPWR          |       | 62     | V    |  |  |
| Logic Supply Voltage                     | VCC           |       | 6      | V    |  |  |
| Input Pin Voltage                        | VIN           |       | 6      | V    |  |  |
| Continuous Output Current                | Іоит(Оит0-15) |       | 20     | mA   |  |  |
| Storage Temperature                      | Tstg          | -55   | 150    | C°   |  |  |
| Operating Ambient Temp                   | ТА            | -40   | 85     | C°   |  |  |
| Operating Junction Temp                  | TJ            |       | 150    | C°   |  |  |
| Thermal Resistance (Junction to Ambient) | RөJA          | 110 T | ypical | C°/W |  |  |

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this data sheet is not implied. Exposure of the device to the absolute maximum ratings for an extended period may degrade the device and affect its reliability.

#### **ESD Warning**

ESD (electrostatic discharge) sensitive device. Although the MX8771 features proprietary ESD protection circuitry, permanent damage may be sustained if subjected to high energy electrostatic discharges. Proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

### **DC Electrical Characteristics**

VCC=5.0V, VPWR=42V, TA=25°C, unless otherwise specified.

| Parameter                      | Condition                      | Min    | Тур | Max    | Unit |
|--------------------------------|--------------------------------|--------|-----|--------|------|
| Logic Supply Voltage           |                                | 1.65   |     | 5.5    | V    |
| Quiescent Logic Supply Current | Inputs = 0 or VCC              |        |     | 1      | μΑ   |
| VPWR Voltage                   |                                | 6      |     | 60     | V    |
| VPWR Current                   | Total of all outputs           |        |     | 240    | mA   |
| GND Current                    | Total of all outputs           |        |     | 240    | mA   |
| Quiescent VPWR Current         | VPWR = 42V, No load            |        | 350 |        | uA   |
| High Level Input Voltage       | SDA, SCL, OE                   | 0.7VCC |     |        | V    |
| Low Level Input Voltage        |                                |        |     | 0.3VCC | V    |
| Input Leakage Current          |                                |        |     | 1      | μΑ   |
| Input hysteresis voltage       |                                | 0.1VCC |     |        | V    |
| Output Low voltage, 3 mA sink  | SDA, VCC > 2                   |        |     | 0.4    | V    |
|                                | VCC < 2                        |        |     | 0.2VCC |      |
| Out0-15 Current                | Any one output, sink or source |        |     | 15     | mA   |
| Out0-15 ON Resistance          | VPWR = 42V                     |        | 45  |        | Ω    |
| Out0-15 Tri-State Leakage      | OE = Logic Low                 |        |     | 1      | μΑ   |

**Notes:** To avoid unwanted output during VPWR application and system initialization, either reset the device (RSTN logic low) or maintain OE logic low until the registers are initialized by I2C control.

Thermal Resistance is measured in still air with the device soldered to a 6 square inch board without a ground plane. Applications may require derating of the specified maximum currents to avoid exceeding the maximum operation junction temperature.



# **AC Electrical Characteristics**

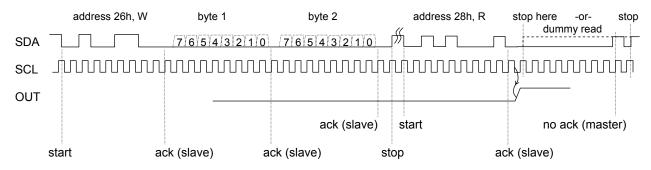
VCC=5.0V, VPWR=42V, Ta=25°C, unless otherwise specified.

| Parameter                 | Symbol | Ol Condition Mi                     |  | Тур  | Max | Unit |
|---------------------------|--------|-------------------------------------|--|------|-----|------|
| OUTx Rise Time            |        | From 10% to 90%,<br>C(OUTx) = 200pF |  | 170  |     | nS   |
| OUTx Fall Time            |        | From 10% to 90%,<br>C(OUTx) = 200pF |  | 140  |     | nS   |
| OE Rising to OUTx Rising  |        | To 90%                              |  | 1100 |     | nS   |
| OE Rising to OUTx Falling |        | To 90%                              |  | 600  |     | nS   |
| OE Falling to OUTx High Z |        | To 10%, OUTx High                   |  | 900  |     | nS   |
| OL I aming to OOTX HIGHZ  |        | To 10%, OUTx Low                    |  | 900  |     | nS   |

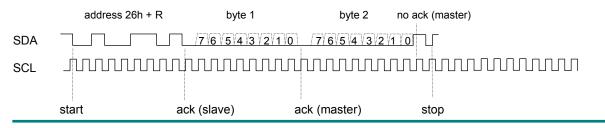
# **Pin Description**

| Pin No. | Pin Name | Description         |
|---------|----------|---------------------|
| 2       | GND      | Ground              |
| 3       | GND      | Ground              |
| 4       | VPWR     | High Voltage Supply |
| 5       | VPWR     | High Voltage Supply |
| 6       | VCC      | Logic Supply        |
| 7       | OUT15    | byte 2 bit 7 Output |
| 8       | OUT14    | byte 2 bit 6 Output |
| 9       | OUT13    | byte 2 bit 5 Output |
| 10      | OUT12    | byte 2 bit 4 Output |
| 11      | OUT11    | byte 2 bit 3 Output |
| 12      | OUT10    | byte 2 bit 2 Output |
| 13      | OUT9     | byte 2 bit 1 Output |
| 14      | OUT8     | byte 2 bit 0 Output |
| 15      | A0       | I2C device address  |
| 16      | A1       | I2C device address  |
| 17      | A2       | I2C device address  |
| 18      | SDA      | I2C Serial Data     |
| 19      | SCL      | I2C Serial Clock    |
| 20      | OE       | Output Enable       |
| 21      | RSTN     | Reset, active low   |
| 22      | OUT0     | byte 1 bit 0 Output |
| 23      | OUT1     | byte 1 bit 1 Output |
| 24      | OUT2     | byte 1 bit 2 Output |
| 25      | OUT3     | byte 1 bit 3 Output |
| 26      | OUT4     | byte 1 bit 4 Output |
| 27      | OUT5     | byte 1 bit 5 Output |
| 28      | OUT6     | byte 1 bit 6 Output |
| 1       | OUT7     | byte 1 bit 7 Output |




The MX8771 responds to two different slave addresses. The first address can be set from 20h to 27h by connecting pins A2, A1, A0 according to the table below and is used to write and read from the 16-bit data register. The second address is fixed at 28h and facilitates the simultaneous update of outputs from multiple bytes and multiple MX8771's. The contents of the data register are transferred to the buffer register when the i2c master issues a read command to address 28h. The data byte that is read from 28h is a dummy byte whose value is undefined. Optionally the master can terminate the read command after issuing the address and the read bit without actually reading a byte.

| A2                              | A1                         | A0                         | i2c slave address                                  |
|---------------------------------|----------------------------|----------------------------|----------------------------------------------------|
| 0<br>0<br>0<br>0<br>1<br>1<br>1 | 0<br>0<br>1<br>1<br>0<br>0 | 0<br>1<br>0<br>1<br>0<br>1 | 20 (hex)<br>21<br>22<br>23<br>24<br>25<br>26<br>27 |

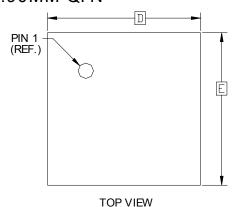

| RSTN | OE | All Outputs |
|------|----|-------------|
| 0    | 0  | Hi-Z        |
| 1    | 0  | Hi-Z        |
| 0    | 1  | GND         |
| 1    | 1  | i2c control |

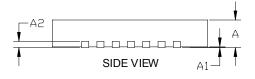
For the following timing examples, pin A2 = high, A1 = high, A0 = low

Write two bytes to the MX8771 data register and then update the MX8771 buffer register:



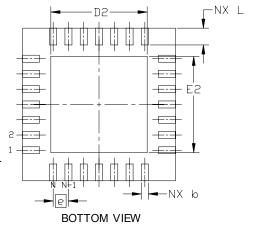
Read two bytes from the MX8771 data register:





MX8771 4 Drawing No. 877109



### 28 LEAD 5MM X 5MM X 0.90MM QFN


| DIMENSIONS |           |       |           |      |  |
|------------|-----------|-------|-----------|------|--|
| DIM        | INCH      |       | MM.       |      |  |
| DIM.       | MIN.      | MAX.  | MIN.      | MAX. |  |
| Α          | .031      | .039  | .80       | 1.0  |  |
| A1         | 0         | .002  | 0         | .05  |  |
| A2         | .008      | REF.  | ,200 REF. |      |  |
| b          | .007      | .012  | .18       | .30  |  |
| D          | .197 BSC  |       | 5.00 BSC  |      |  |
| D2         | .118      | .128  | 3.00      | 3.25 |  |
| E          | .197      | BSC   | 5.00 BSC  |      |  |
| E2         | .118      | .128  | 3.00      | 3.25 |  |
| е          | .0197 BSC |       | 500 BSC   |      |  |
| L          | .0177     | .0256 | .45       | .65  |  |
| N          | 28        |       | 28        |      |  |





- 3. MOLDED PACKAGE SHALL CONFORM TO JEDEC STANDARD CONFIGURATION MO-220 VARIATION VHHD-1.
- 2. DIMENSIONS AND TOLERANCING CONFORM TO ASME Y14.5M-1994.
- 1. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.

NOTES: (UNLESS OTHERWISE SPECIFIED)



IXYS Corporation makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in IXYS' Standard Terms and Conditions of Sale, IXYS Corporation assumes no liability whatsoever, and disclaims any expressed or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.



### **IXYS Corporation**

3540 Bassett Street Santa Clara, CA 925054 Tel: 408-982-0700 Fay: 408-496-0670

Fax: 408-496-0670 e-mail:sales@ixys.net

### **Micronix**

### An IXYS Company

145 Columbia Aliso Viejo, CA 92656-1490

Tel: 1-949-831-4622 Fax: 1-949-831-4628

#### **SALES OFFICES AMERICAS**

### **Eastern Region**

[Eastern North America, Mexico, South America] IXYS Corporation

Beverly, MA

Tel: 508-528-6883 Fax: 508-528-4562 wgh@ixys.net

### **Central Region**

[Central North America] IXYS Corporation Greensburg, PA Tel: 724-836-8530

Fax: 724-836-8540

neil.lejeune@westcode.com

### **Western Region**

[Western North America] IXYS Corporation Solana Beach, CA Tel: 858-792-1101 slodor@ix.netcom.com

### **United Kingdom**

IXYS Semiconductor Limited Langley Park Way Langley Park Chippenham Wiltshire SN 15 1GE - England

Tel: 44 1249 444524 Fax: 44 1249 659448 sales@ixys.co.uk

#### Sales Offices ASIA / PACIFIC

### **Asian Headquarters**

**IXYS** 

Room 1016, Chia-Hsin, Bldg II, 10F, No. 96, Sec. 2 Chung Shan North Road Taipei, Taiwan R.O.C. Tel: 886-2-2523-6368

Fax: 886-2-2523-6368 bradley.green@ixys.co.uk Jhong@clare.com

Check the IXYS Website for the local sales office nearest you. (www.ixys.com)

### **SALES OFFICES EUROPE**

### **European Headquarters**

IXYS Semiconductor GMBH Edisonstrasse 15 D- 68623 Lampertheim Germany

Tel: 49-6206-503203 Fax: 49-6206-503286 marcom@ixys.de

### http://www.claremicronix.com

IXYS cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in this IXYS product. No circuit patent licenses nor indemnity are expressed or implied. IXYS reserves the right to change the specification and circuitry, without notice at any time. The products described in this document are not intended for use in medical implantation or other direct life support applications where malfunction may result in direct physical harm, injury or death to a person.

Specification: MX8771 ©Copyright 2008, IXYS Corporation All rights reserved. Printed in USA.